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1. Introduction

Suppose (Xk, k E72 ) is a strictly stationary sequence of random variables

on a probability space (0,F,P). For _o < J < L < - let F denote the o-field

of events generated by (Xk, J < k < L). For the sequence (Xk) the "past" and
F-n F

"future" tail a-fields are respectively n and n F, and the "double"
n=l n=l n9

* tail u-field is n (F-n v Fn). The sequence (Xk) is said to be "bilaterally
n=l _

deterministic" if each of the r.v.'s Xk is measurable with respect to the

double tail o-field.

Several authors have discussed examples of strictly stationary sequences

(Xk) which have a non-trivial double tail C-field - or are even bilaterally

deterministic - such that the past and future tail a-fields are each trivial.

Olshen [5] gives an example with the X~s in essence being real-valued. In

Gurevi4 [2] and in Ornstein and Weiss [6], classes of finite-state examples

are constructed, some of these examples being isomorphic to a Bernoulli shift.

Also [6] refers to similar work of Furstenberg. Here we shall examine the

question of what strong mixing conditions can be satisfied by bilaterally

deterministic stationary sequences of real-valued r.v.'s. This work arose from

a question posed to the author by H. Berbee as to whether the (Rosenblatt)

stronq mixing condition implied a trivial double tail o-field.

For any two C-fields A and B define the "maximal correlation":

p(A,8) :- sup ICorr (f,g)l

f L2(A), a L (8)

2* (In the notation L2(.) here, only real-valued random variables are included.) N

For a given strictly stationary sequence (Xk, k 2), define for each n IN,

.. ... -. ° .- . . .. .-...-.. .. . .*- ,.-.. .. -. . * . -. *w . .-. ' •m% wb ,'. . _ '"
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p(n) p(FO The sequence (Xk) is said to be "p-mixing" if p(n) - 0

as n o. The following theorem will be proved:

Theorem 1: Suppose c1,,c c3,... is a sequence of positive numbers. Then

there exists a bilaterally deterministic strictly stationary sequence (Xk, kcZZ)

of non-degenerate real-valued random variables such that Vn IN, p(n) < cn -

In particular, a (non-degenerate) bilaterally deterministic strictly

stationary sequence (Xk) can be p-mixing with an arbitrarily fast rate of

convergence of p(n) to 0. Now p-mixing implies the (Rosenblatt) strong mixing

condition, which in turn implies that the past and future tail o-fields are each

trivial. (See e.g. [4, pp. 301-306, Def. 17.1.1, Theorem 17.1.1, and Def.

17.2.1].) Among the mixing conditions in the literature which fail to imply

a trivial double tail o-field, there does not seem to be any that is stronger

than p-mixing. The p-mixinq condition plays a natural role in central limit

theory for dependent r.v.'s; see e.g. Ibragimov [3].

Theorem 1 is proved in Section 3. In Section 2 some preliminary work is

done in preparation for that proof. Our construction in Sections 2 and 3 is

similar to (but more complicated than) Olshen's; his construction (see

[5, p. 155, lines 5-10, and p. 156, lines 4-12]) contains some key ideas used

in our construction.

Accossion For

'~j lol.. .....
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2. Preliminaries

k-4

The following result of Csaki and Fischer [1, Theorem 6.2] will play

a key role later on:

Lemma l (Csaki and Fischer): Suppose A and 8 n' n E IN, are a-fields,
n n

and the a-fields A v Bn, n E IN are independent. Thenn n
v A V B supp(v A, v 8n = UniP(nB)

nC1 n N

For a proof see Witsenhausen [7, Theorem 1]. (In that context there

were only finitely many pairs of a-fields, but the extension to Lemma I is

el ementary.)

Next, for any family Z of random variables let 8(Z) denote the a-field

of events generated by Z.

Lemma 2: Suppose ci,c2 ,c 3 ,... is a sequence of positive numbers. Then

there exists a non-degenerate sequence (Yk' k EAi) of real-valued random

variables such that the following two statements hold:

(i) Vn c IN, VK Z4 p(B(Yk, k < K), B(Yk' k > K+n)) <cn.

(ii) VK cEZ, YK is measurable with respect to -n (B(Yk, k < -n) v B(Yk, k>n)).
n=l--

The sequence (Y that we shall construct for Lemma 2 will not be stationary,

but it will obviously have the other properties needed for Theorem 1. In

Section 3 the stationary sequence (Xk) for Theorem 1 will be constructed with

the aid of a countable family of independent copies of the sequence (Y k here.

The rest of Section 2 is devoted to the proof of Lemma 2.

41.-.

* U A.;~7Lv.- ~..~%.***. ~.. ~ -
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Proof of Lemma 2: Without loss of generality we assume that

1> c1 > c 2 >_c 3 > > 0 (2.1)

For each n IN define

rn =c2  (2.2)

(The purpose of (2.2) will become clear later on.)

On some probability space, let (Vkm: k E 7' mc IN) be an array of

random variables with the following three properties:

(2.3) For each (k,m),

P(Vk,m -1) = P(Vkm = 1) = 1/2.

(2.4) The random variables VO,m , m c IN and the random vectors (V IVnV-n,m n,m
n E IN, m I 1N are all independent of each other.

(2.5) For each n IN, m c IN, i c {-Il}, I {-l,l},

P(V n,m=i, Vn,m = j) = (I + ijr n)/4.

Let h: IN -I 4 be a function such that for each I I 4 the following

two statements hold:

(2.6) There exist infinitely many odd integers mc I4 such that h(m) =4'.

(2.7) There exist infinitely many even integers m I N4 such that h(m) =4'.

For each f E IN, J F IN, define the two sets S(Z,J,odd) and S(I,J,even) as

follows: S(I,J,odd) (resp. S(I,J,even)) is the set of the least J positive

odd (resp. even) integers m such that h(m) = 4.

By (2.5) we have that for each n IN, m IN, EV nmVnm=rn; and by (2.4) and
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the strong law of large numbers, for each n 6 IN , IN,

limd (/d)'ZmES(eJdodd)V-n'mVn m= rn a.s. and

limj(l/J)VnV = r a.s. Deletina if necessary a null-setJ- Co'/) m S (1,J, even) V-n,m n,m n

* from the probability space on which the array (V k,m ) is defined, we assume that

for every sample point w in this probability space the following two statements

hold:

(2.8) For every k 72, m F IN, Vkm(W) {-Ill,

(2.9) For every n F IN, t IN ,

Lim (l/J). inS(,odd) V-n,m(w)'Vn,m() r. and

Limj-(I'/d)" YmCS(R,J,even)V-n,m(w).Vn,m(,,
)  r n-

Let us digress for a moment to explain what will occur. Based on the

array (Vk,m) another array (Wk,m) of {-l,l1}-valued random variables will be

defined, and for each k c 72 the r.v. Y in Lemma 2 will simply be a one-to-one

bimeasurable function of (Wkl, Wk 2 Wk3,...). For each n IN, t c IN, the

r.v. W will be a function of the r.v.'s (W_ W m odd, h(m) =f),
-n,e -n-l,m' n+l,m

and W will be a function of (Vl_ , W m even, h(m)='). In the end
njn-l,m' n+l,in

this will easily imply property (ii) in Lemma 2, but it has to be set up so

* that in the ene property (i) of Lema 2 will also hole.

Now let us define the array (Wm: krZ7, meIN). First,
k~m

Vk < 0, Vm c IN, Wkm := Vkm (2.10)

The definition of the other random variables Wk,m will be recursive. For each

" i m , , ' . " W" .', . , " ,' . , . • . . " "• -"-%
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n > 0. once (Wkm: k < n, m * IN) is defined, define Wn+ 1 m' m c N as follows:

V odd m ,IN, Wn+lm W-n,h(m) Vn+l,m

(2.11)
V even m c IN, Wn+im Wnh(m) Vn+l ,m

This completes the recursive definition.

In order to make our notation more compact, let us define for each k 27

the random sequences Vk and Wk by Vk (Vk, l , Vk,2 , Vk,3,.) and

Wk := (Wk,1 Wk2 , Wk3,.

By (2.8), (2.10), (2.11), and an induction argument, we have the

following two facts:

(2.12) For every k MZ, m IN, the r.v. Wk,m takes its values in {-1,11

(at every sample point in our probability space).

(2.13) For every n = 0,1,2,... the random sequences Wn and Wn are

measurable functions of (V_n, V n+l,..., Vn)

Claim 1: For each n >0 the random sequences W n and Wn are each a

measurable function of (W_n-l, Wn+l).

Proof of Claim 1: Let n > 0 and f I N be arbitrary but fixed. Then at

every sample point in our probability space, by (2.10), (2.11), the definition

of S(f,J,odd), and (2.9),

LmJ-)(1/J)'Y.mS(t,J,odd) W-n-l,m~n+l,m

:Lim_,(I/J)'m.S(,Jodd) V-n l,m W-n,h(m) Vn+lm

=W-n, Lim.uf (l/J)" YeiS(,J,oe,4) V-n-l,m Vn+l,m = rr+!

Hence W in, is a measurable function of (W-nl Wn+l). The same is true for

-. n. -. n.. - , .- - -,

k - -
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Wn, by a similar arqument using S(C,J,even). Claim 1 follows.

By Claim I and an induction argument we have the following:

Claim 2: For each K c Z, the random sequence WK is measurable with

respect to n (8(Wk, k_ -n) v B(Wk, k > n)).
n=l

This will give us (ii) of Lemma 2 later on. Now we have to do some work

to prepare for (i) of Lemma 2.

Claim 3: Suppose n I , m N , and Z is a random variable independent

of (V n,m, V n,m ) and taking its values in f-l,l1. Then the following two

statements hold:

(i) The joint distribution of (Z-V n, Z-V n,m ) is the same as that of
(Vnn, m , Vn,m).

(ii) p(B(ZV_ n,m), B(Z-V )) = p(B(V_n,m ), B(V n,m)) = rn .

Proof of Claim 3: Part (i) follows from (2.5) and an elemetary calcula-

tion. The first equality in (ii) follows from (i); we only need to verify the

second equality in (ii).

Suppose f (resp. g) is a non-degenerate function of V n,m (resp. V n,m).

Since Vn m takes only two values (-I and +1), it is easy to see that f is

automatically an affine function of V.n,m. Similarly q is an affine function

of V Hence JCorr (f,g)l JCorr (V_, V )I r by (2.5) and an,m n,m' n,m n
simple calculation. The second equation in (ii) follows, and Claim 3 is

proved.

Claim 4: Suppose n 0 0, and Z1,Z2,Z3,... are B(Wk, -n < k < n)-measurable

random variables taking their values in {-l,l}. Then the (-fields

8(Wk , -n < k < n) and R(Z'VnlI Zj Vn+lj), J 1,2,3,... are allrV ..................... pnlJ * n.,) J
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independent of each other.

Proof of Claim 4: Let J > 1 be arbitrary but fixed. Define the a-field

J-1
A B(Wk, -n < k < n) v ( V B(Zh'Vn.lh, Zh'Vn+lh)). (In the case J=l

h=l

define A B(Wk , -n ' k < n).) To prove Claim 4 it suffices to prove that
the random vector (Z, Zj'Vn+J) is independent of A.

Let A E A be an arbitrary fixed event such that P(A) > 0. Let ij each

be an arbitrary fixed element of {-l,l1. It suffices to prove that

P(ZjVnI.j = it ZjVn+,J = j1A) =

(2.14)
P(Zj'V n-,j = i, Z'V = j).Jn+l,J

By (2.13) the random sequences W_n, W_n+l,..*, Wn are (measurable)

functions of Vn, V-n+l, ...,Vn  Consequently A is an element of, and Z is

measurable with respect to, the a-field

!(Vk, -n<k<n) v B(V nllh,Vn+lh: I<h<J-l); and (Vn 1 ,jV n+l ,J) is independent of

this c-field by (2.4). Consequently, for each zc{-1,1} such that P(An{Zj=z}) > 0,

one has that

P(Z JV-n-,J = it Z YVn+l,J = IA n {Z = z}) =

P(V_ n-,j= i/z, Vn+l,J - j/z IA n {Zj = z})

= P(V n-1 ,j = i/z, Vn+l ,J - j/z)

= (1 + rn1 ij/z 2 ) = (1 + rn+ii)

= P(ZjVin,j = i, n+ l , J = j).

(We are using (2.5) and Claim 3(1).) Equation (2.14) now follows by a simple
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argument, and this completes the proof of Claim 4.

In applying Claim 4 in what follows, we shall sometimes implicitly take

Zj :1, in which case B(Zj V_ nlj, Zj Vn+ l , J ) B(V n_1,j, Vn+ l , J ) .

Claim 5: For each n IN the following two statements hold:

(i) p(B(Wk' -n < k < n-l), B(Wn)) < rn -

(ii) (s(Wn), 8(Wk ,  -n+l < k < r)) < rn

Proof of Claim 5: Let n c IN be arbitrary but fixed.

Proof of Claim 5(i): Define the a-fields A. and B., j = 0,1,2,... as

follows: A0 := B(Wk, -n+l < k < n-l) and B0 :0 {Q,}. For odd j > 1,

A. := B(W n+l,h(j) V_ n) and B. := (W_ n+l,h(j)V n). For even j > 2,

A -= (Wn- l , h(j)*Vnj) and : B(Wn l Vh(j) n,j (Here of course Q2

denotes the sample space.) Define the a-fields A and B by

A v A. and B -- v B.
j=o J  j=0 J

For each odd j IN , by (2.10) and (2.12),

W- nj =V = (W_ n+l,h(j)' Vnj)'W-n+lh(j), and since (W_ n+lh(j)'V_n) and

W- h are each A-measurable, W is A-measurable. Similarly, for each

even j c IN, W_ nj is A-measurable. Hence Wn is A-measurable. (Of course

W_n+l.... Wn_ are also A-measurable.)

Also, for each j 1, B. 8(Wn.) by (2.11); and hence B = B(Wn). Hence
- n,j n

".. I-' -' --T .' > - -. . . . 'Z T .T > "- Z- -. - " . -- . . "; . - . L - . ' -'

;-'- ." '"-"" "-',".' -f i c • . " '- '- . : ' "- ". - ",",. . .'. .'. .- \ ".. '..-.-.- . - -z
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P(B(W-n W_ n+l,. Wn-l) B(Wn)) < p(AB) = supj> 0 p(Aj,Bj) = rn

Here the inequality is trivial, the first equality holds by Claim 4 and Lemma

1, and the second equality holds by Claim 3. This completes the proof of (i).

Proof of Claim 5(ii): This is analogous to the proof of (i), but with a

few changes. One defines the o-fields A. and B. as follows:3 3

A0 := (Q,q) and 80  = B(W-n+l, , Wn1 )

For all j > 1, Aj : (V n,j) and B. := B(V n,j )

Again one defines A := v A. and B := v 8.. Then one observes that A B(Wn)

j=o j=o n

and that Wn (as well as Wn+l.**.., W n_) is B-measurable. The proof of (ii)

is then completed in the same way as (i).

Claim 6: For each n IN the following two statements hold:

. . (i) p(8(Wk, k < n-l), B(Wk, k > n)) < in.

(ii) p(B(Wk, k < -n), B(Wk, k > -n+l)) < rn '

Proof of Claim 6: Let n c IN be arbitrary but fixed.

Proof of Claim 6(i): It suffices to prove that VN > n,

p(B(Wk, -N < k < n-l), B(Wk , n < k < N)) < rn. We shall show this by induction

on N. By Claim 5, p(B(Wks -n < k < n-l), B(W n)) < r Now we only need to

carry out the induction step.

Assume that N > n is such that

-(B(W N k < n-l), B(Wk , n < k < N)) rn. To prove Claim 6(i) it suffices

'6 V

-. . . . ..- . - ., -

*. ... *.*...



to show that p(S(Wk, -N-1 < k < n-1), B(Wks n < k < N+l)) < rn. The proof

will be somewhat similar to that of Claim 5.

Define the o-fields A. and B., j=O,l, 2,... as follows:

* A0 := B(Wk, -N < k < n-1) and 8 := B(Wk, n k < N)

For each odd j > 1, A. : B(W .N,h(j).V ) and
- .J -~h~j)-N-l,j

Bj = -Nh(j)'VN+l,j)

For each even j>2, Aj : (V_N-I,j) and B B(VN+lj)

Define the a-fields A and B by

A:= v A. and B= v B.
j=O j=0 3

For each odd j IN , by (2.10) and (2.12),

W N-1 j = VNIj = (W N Vh(j) 'VN_,j W_ which is a product of two

A-measurable r.v.'s, and hence WNlI~ is A-measurable. For each even j I N,

W_N-Ij VN-I,j' which is A-measurable. Hence W-N-1 is A-measurable.

For each odd j r I, by (2.11), WN+j = WNh(iVN+ j which is

N+l,j -N,h(j N+1,j"B-measurable. For each even j c IN, W N+l~j = W N,h(j)' VN+l,j, which is a product

of 8-measurable functions and is therefore B-measurable. Hence WN+ l is B-measurable.

Consequently,

PO(8(Wk, -N-I < k < n-l), B(Wk , n < k - N+l)) < p(A,B) = supjo o(Aj,gj) -

_ max (rn ~rN+l -- rn.

~~.... ...-..- .. . . ........ . . -. .-. ..........-...-...-................... ..... ,... . .- .............. .::
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Here the first inequality is trivial, we are using Claim 4 and Lemma 1 to

obtain the first equality, and then Claim 3 and the induction hypothesis to

obtain the second inequality, and finally (2.1) and (2.2) to obtain the second

*, equality. This completes the induction step, and Claim 6(i) is proved.

Proof of Claim 6(ii): This is essentially identical to the proof of (i).
One has to change the definition of AO and B to A : B(Wk , -N < k -n) and

S0 := B(Wk, -n+l < k < N).

Claim 7: If n IN and K 9- then p(B(Wk' k < K), B(Wk, k > K+n)) < cn.

Proof of Claim 7: Let us first consider the case where n is odd, say

n =2m-1 where m r IN. Then either K < -m or K+n > m. If K < -m then

-2K > 2m > n, and

p(B(Wk, k < K), B(Wk, k > K+n)) <

< PONWk  k < K)9 s(W , k > K+1))

<r K = c2 K < Cn

by Claim 6(ii), (2.2), and (2.1). If instead k+n > m then a similar argument

(using Claim 6(i)) works. The proof for even n is similar to that for odd n.

The rest of the proof of Lemma 2 is now a trivial, cosmetic formality. Let

f: {-l,l1} x {-l,l} x {-l,l1 } ... x F be a bimeasurable isomorphism. (It is

well known that such an f exists.) Define the sequence (Yk' k fe/) by

Yk : = f(Wk) Vk c 72. Properties (i) and (ii) of Lemma 2 now follow immediately

from Claims 7 and 2 respectively. This completes the proof of Lemma 2.

.* * * * * *' * * * ***_J6.*
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3. Proof of Theorem 1

Let c1 , C2, c3,... be as in the statement of Theorem 1. Our first step

is to construct countably many copies of the probability space and random

sequence (Yk' k t 7Z) from Lemma 2. Then on the product probability space

we obtain an array (YJ:- k c ZZ, j Z7) of real-valued random variables with

the following three properties:

(3.1) The sequences (Y J), k 7), j ... , -1,0,1,..., are non-degenerate
k

and are independent of each other, and they have the same distribution on

...- IR x IR V IR X ...

(3.2) For each j 7 Z, n IN , K E 7?, p(B(y k ), k < K), B(Ykj. k>K+n)) < cn

(3.3) For each j 7 7, K c 7, the r.v. YJ is measurable with respect to

n (l(YJ), k < -n) v B(Ykj ) , k > n)).
n=l

Let g: ... F x R x JR ... F be a bimeasurable isomorphism. (It is

well known that such a function g exists.) Define the sequence (Xk, k 7?) of

real-valued random variables as follows:

Vk 7/ Xk::g(..., y(k-1) , y~k), y~k+l),...)(34

By a simple argument using (3.1), this sequence (Xk) is non-degenerate and

strictly stationary.

For each n r IN, by (3.4),

B(X k < -n) v 8(Xk, k _> n)

(B(Y , k > j+n)v B(Y( J ) , k < j-n))
if - _

ll .'.-." " " * ~~~~~~~. . . . '. [ ." ." . . - ' ' " " . ....- ,... I
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Hence for each n r IN, K 7 , the r.v. XK is measurable with respect to

tB(Xk, k < -n) v B(Xk, k > n), by a simple argument using (3.3) and (3.4).k k _

Hence the sequence (Xk) is bilaterally deterministic.

For each n 14,

p(n) p(B(Xk , k < 0), B(Xk, k > n))

( v Yj), k 2! j), v B(Yk j ) , k < j-n))

sup 7  P(B(Y k > j), B(Y k) k _< i-n)) < cn-

by (3.4), (3.1), Lema 1, and (3.2). This completes the proof of Theorem 1.
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